Параметры электронных ламп
Для каждого типа электронных ламп в справочных таблицах (листы 184-219) приводятся основные параметры - данные, характеризующие усилительные свойства лампы, а также ее типовые рекомендуемые режимы. К рекомендуемым режимам относится напряжение накала Uн и соответствующий этому напряжению накальный ток Iн. При одном и том же напряжении Uн накальная цепь лампы потребляет тем большую мощность, чем больше у нее ток накала (Рн = Uн x Iн). Если вы просмотрите справочные таблицы, то увидите, что так называемые выходные триоды, лучевые тетроды и пентоды, то есть лампы, которые должны развивать сравнительно большую мощность, потребляют большой накальный ток Iн.
На листах 184-219 указываются также рекомендуемые постоянные напряжения на аноде Uа и экранной сетке Uэ и соответствующие этим напряжениям токи Iа и Iэ. Здесь нужно сразу же отметить, что очень часто конструкторы не придерживаются рекомендуемых величин. Так, например, для большинства сетевых (подогревных) ламп рекомендуется анодное напряжение 250 в, а их почти всегда используют при более низком напряжении - вплоть до 150-100 в. При этом усилительные свойства ламп несколько ухудшаются, но с этим вполне можно мириться. При уменьшении напряжения на аноде Ua приходится пропорционально уменьшать и экранное напряжение. Одновременное этим уменьшаются и токи Iа и Iэ.
Для многих ламп в таблицах указывается и рекомендуемое постоянное напряжение на управляющей сетке, но об этой величине следует поговорить особо, и мы это сделаем в следующем разделе.
Одним из основных параметров усилительной лампы является ее крутизна, которая показывает, насколько сильно напряжение на управляющей сетке влияет на величину анодного тока (листы 112, 113). Крутизна обозначается буквой S и измеряется в миллиамперах на вольт (ма/в). Так, например, если S = 2 мa/в , то это значит, что при изменении управляющего напряжения (напряжение между сеткой и катодом) на 1 в анодный ток изменится на 2 ма. Для большинства ламп крутизна лежит в пределах от десятых долей до нескольких ма/в. Совершенно очевидно, что, чем больше крутизна лампы, тем сильнее управляющее напряжение влияет на анодный ток, тем, следовательно, лучше усилительные свойства лампы при прочих равных условиях.
Однако крутизна не полностью характеризует лампу: имеются еще два очень важных параметра - коэффициент усиления μ и внутреннее сопротивление Ri. Коэффициент μ показывает, какое максимальное усиление можно получить от лампы, то есть во сколько раз переменное напряжение на выходе каскада может быть больше, чем усиливаемое напряжение. Практически лампа может обеспечить меньшее усиление, чем об этом говорит коэффициент μ.
У многих ламп коэффициент усиления очень велик и у некоторых пентодов достигает нескольких тысяч. Имеются лампы и с очень небольшимμ (десятки и даже единицы). Но низкий коэффициент усиления не всегда следует относить к недостаткам лампы. Так, например, от выходных ламп не требуется большого μ . Основное, что требуется от этих ламп, - это возможность получить на выходе сигнал большой мощности (несколько ватт), даже если для этого придется подать на вход лампы весьма большое переменное напряжение (несколько вольт).
Прежде чем говорить о третьем основном параметре лампы - ее внутреннем сопротивлении Ri, вспомним, что если изменить напряжение на аноде лампы, то изменится ее анодный ток, то есть произойдет то же самое, что и в обычном сопротивлении: если изменить напряжение, которое подводится к какому-нибудь сопротивлению, то изменится и протекающий по нему ток. У большинства пентодов внутреннее сопротивление очень велико и достигает нескольких сот килоом, а иногда и нескольких мегом. У триодов и выходных ламп Ri намного меньше - оно не превышает нескольких десятков килоом, а иногда бывает и меньше одного килоома.
Величину внутреннего сопротивления приходится учитывать при выборе ламп для того или иного усилительного каскада. Так, например, если к аноду лампы подключен контур, то Ri этой лампы должно быть весьма большим - малое внутреннее сопротивление будет шунтировать контур, снижая его добротность Q (рис. 50, 51). Для выходных ламп величину Ri указывают не всегда, но обязательно приводят величину так называемого оптимального сопротивления нагрузки (Ra или Rопт), с которой мы встретимся позже. В наших таблицах обе величины даны в килоомах. Данные, приведенные на листах 184-219, позволяют судить об усилительных свойствах той или иной лампы, а также в случае необходимости решать вопрос о замене одного типа ламп другим.