Теперь, когда мы уже знаем, что такое заряд, сопротивление, ток и электродвижущая сила и какими единицами они измеряются, можно познакомиться с основными соотношениями в электрических цепях, с основными законами электротехники. Первый и, пожалуй, самый важный из них - это закон Ома. Им приходится руководствоваться при рассмотрении всех без исключения цепей электро- и радиоаппаратуры. Недаром у радиолюбителей в отношении закона Ома существует такая суровая поговорка: «Не знаешь закон Ома - сиди дома!»

Давайте вернемся к нашему «подопытному» карманному фонарику (рис. 6). От чего зависят основные характеристики этой электрической цепи: э. д. с, сопротивление и ток? Очевидно, э. д. с. зависит от активности химических реакций в батарейке, а сопротивление нити лампочки - от ее материала, длины, диаметра и температуры. А от чего же зависит ток в цепи? Попробуем разобраться.

Источником тока является батарея - именно она заставляет электроны двигаться по цепи. Сама же электрическая цепь, и особенно лампочка, обладая определенным сопротивлением, в какой-то степени препятствует движению электронов. Чем больше э.д.с. (Е) батареи, тем большей работоспособностью будет обладать каждый движущийся заряд, тем легче он преодолеет все препятствия и быстрее пройдет по цепи. А чем быстрее движутся заряды, тем большее их количество проходит через любую точку цепи, тем, следовательно, больше ток.

Совершенно иначе влияет на ток сопротивление цепи. Чем больше сопротивление лампочки тем труднее двигаться зарядам, тем меньше их скорость, а следовательно, тем меньше и ток.

Таким образом, величина тока в цепи зависит от электродвижущей силы Е и сопротивления R увеличением э.д.с. ток растет, а с увеличением сопротивления уменьшается. Эта зависимость, называемая законом Ома для всей цепи (лист 25), может быть выражена очень простой формулой:

Закон Ома

Возле условных обозначений тока, э. д. с. и сопротивления в скобках указаны те единицы измерения, при которых расчеты по приведенной формуле дадут верный результат. Если же хоть одна из величин дана в других единицах, то необходимо пересчитать значения остальных величин. При этом удобно пользоваться таблицей, приведенной на листке 27.

Закон Ома. Выбор единиц для формул закона Ома

Теперь давайте на несколько минут отвлечемся от нашего основного разговора и уделим внимание тем немногим читателям, которые испытывают страх перед формулами. Если такой читатель увидит в книге формулу, он обязательно поморщится и побыстрей перевернет страницу. Вот и сейчас, наверное, кое-кто выражает недовольство: «Ну зачем нужно было записывать закон Ома в виде формулы? Ведь все и так понятно! Нельзя ли вообще обойтись без формул?»

Можно, конечно, обойтись и без формул и вместо них пользоваться словами или картинками. Точно так же можно обойтись и без автобусов, поездов и самолетов и всегда ходить пешком. Только кому это нужно - из двух решений выбирать самое сложное, самое неудобное?

Польза формул

Формулы - очень удобный, а иногда даже незаменимый способ записи самых различных законов и зависимостей (рис. 10). Нужно только научиться понимать формулы, знать их язык. Вот, например, приведенная выше формула закона Ома. Она ясно говорит о том, что ток I равен частному от деления Е на R, то есть ток зависит от обеих этих величин. Величина Е стоит в числителе дроби, и, значит, с ее увеличением ток растет. Сопротивление R стоит в знаменателе, и поэтому сразу ясно, что с увеличением R ток уменьшается (чем больше знаменатель, тем меньше значение дроби, например 1/4 меньше чем 1/2).

Подставив в формулу закона Ома известные нам значения Е и R, можно сразу вычислить ток в цепи. Так, например, если E = 4,5 в, а R = 75 ом, то I = 0,06 а = 60 ма.

Кроме лаконичности, наглядности и удобства для вычислений, формулы имеют еще одно достоинство - их легко преобразовать и привести к удобному для вычислений виду. При этом приходится пользоваться лишь одним правилом: если мы одновременно умножим или разделим правую и левую часть равенства на одну и ту же величину или же проделаем с обеими частями какую-либо другую алгебраическую операцию (сложение, вычитание, деление и т. д.), то равенство не нарушится. Пользуясь этим правилом, можно получить еще две удобные для расчетов формулы (лист 25).

Производные из закона Ома

Первая из них, позволяющая подсчитать Е, если известно I и R, получена нами из формулы закона Ома путем умножения обеих ее частей на R. Вторую формулу, предназначенную для расчета сопротивления цепи R по известным Е и I (ток и э.д.с. легко измерить приборами), также можно получить из формулы закона Ома, если обе ее части умножить на R и разделить на I.

На этом простом примере видно, что формулы могут оказаться очень полезными при расчетах и решении практических задач. При одном взгляде на формулу можно установить основные соотношения того закона, к которому она относится. Правда, в последнем случае нужно знать физический смысл самого закона. Действительно, если не знать этого, то, анализируя две последние формулы, можно прийти к таким нелепым выводам: э. д. с. батареи зависит от... сопротивления цепи (вторая формула), или: сопротивление цепи зависит от... э.д.с. батареи (третья формула).

Подведем итог: всякий, кто хочет всерьез заниматься наукой и техникой и, в частности, радиоэлектроникой, должен буквально со школьной скамьи приучить себя к мысли о том, что формулы - вещь удобная, а порой даже необходимая. А для того чтобы не испытывать страха перед формулами, нужно научиться читать и понимать их так же свободно, как вы читаете и понимаете обычные слова.