Схема первого из приемников (чертеж 19) почти полностью повторяет схему нашего электрического макета: здесь применены те же усилительные лампы: 6И1П, 6К4П, 6Ж1П, (6ЖЗП) и 6П1П, те же схемы отдельных узлов: входной цепи, преобразователя частоты, детектора, усилителей ПЧ и НЧ, а также сохранена нумерация основных деталей. Некоторое отличие представляет лишь схема регулировки тембра и блока питания.

Регулировка тембра осуществляется в специальной цепи отрицательной обратной связи, которая возникает благодаря включению конденсатора С31 между анодом и управляющей сеткой лампы Л4. Так как емкость конденсатора С31 очень мала, то этот конденсатор не пропускает из анодной цепи на сетку низшие звуковые частоты, и обратная связь в основном существует лишь на высших звуковых частотах. А поскольку обратная связь в данной схеме получается отрицательной, то она ослабляет сигнал, поступающий на сетку лампы с предыдущего каскада, причем ослабляет лишь высшие звуковые частоты этого сигнала. Иными словами, благодаря введению обратной связи у частотной характеристики усилителя появляется «завал» в области высших частот (рис. 146).

Нарисованная нами картина в полной мере относится к случаю, когда движок потенциометра R16 («регулировка тембра») находится в верхнем (по схеме) положении и все напряжение, поступающее через конденсатор С31, полностью подается на сетку лампы. Теперь представьте себе, что движок потенциометра R16 находится в крайнем нижнем положении. В этом случае конденсатор замкнут на «землю», напряжение обратной связи на сетку не поступает, и «завала» частотной характеристики нет. Совершенно ясно, что если мы будем перемещать движок потенциометра из одного крайнего положения в другое, то будет изменяться глубина обратной связи, а вместе с ней и степень «завала» частотной характеристики, то есть, иными словами, будет происходить регулировка тембра.

В блоке питания рассматриваемого приемника выпрямитель выполнен по так называемой мостовой схеме (лист 177). Прежде чем разбирать ее, нам придется коротко остановиться на схеме двухполупериодного выпрямителя (лист 176), которая используется во втором приемнике.

Рассмотренная нами ранее схема выпрямителя называется однополупериодной. Название это связано с тем, что в таком выпрямителе ток через вентиль проходит лишь в течение одной половины периода, а во время второго полупериода наступает пауза — вентиль тока не пропускает. Особую роль при этом играет первый конденсатор фильтра — Сф134). Когда вентиль пропускает ток, этот конденсатор заряжается (то есть накапливает заряды), а во время паузы он разряжается через нагрузку — через анодные цепи ламп. Учитывая все это, конденсатор Сф1 можно назвать накопительным конденсатором. Именно благодаря этому конденсатору ток через нагрузку протекает все время, а не только в те моменты, когда проходит ток через вентиль.Чтобы лучше уяснить роль накопительного конденсатора, представьте себе, что у вас имеется бак с открытым краном у самого дна и что кто-то через равные промежутки времени ведром доливает в этот бак воду (рис. 147).

Можно так подобрать емкость бака и количество доливаемой воды, что бак никогда не будет оставаться пустым и из крана все время будет бежать струя воды. Такая система очень похожа на наш выпрямитель: бак играет роль накопительного конденсатора Сф1, открытый кран характеризует потребление тока нагрузкой, а доливание воды ведром напоминает импульсы тока, которые проходят через вентиль пятьдесят раз в секунду. Что же касается выпрямленного напряжения, то его можно сравнить со средним давлением воды на дно бака. Очевидно, это давление зависит от среднего уровня воды в баке.

Развивая наше сравнение, можно сделать ряд очень интересных выводов относительно работы выпрямителя. Прежде всего отметим, что ток через нагрузку будет пульсировать, то есть будет периодически меняться по величине, подобно тому как меняется скорость воды, вытекающей из крана (чем ниже уровень воды в баке, тем медленнее она вытекает). Мы уже знаем, что, для того чтобы сгладить пульсацию тока, в фильтр выпрямителя вводят дроссель (или сопротивление) и еще один конденсатор Сф235). Попутно заметим, что, чем больше потребляемый ток, тем сильнее будут его пульсации (чем больше открыт кран, тем резче меняется уровень воды за время между двумя доливаниями). Величина пульсаций зависит также и от емкости накопительного конденсатора: чем больше эта емкость, тем большую энергию накопит конденсатор в то время, когда вентиль пропускает ток, тем меньше будут пульсации.

Аналогично при увеличении емкости бака возрастет объем запасаемой в нем воды и уменьшается влияние открытого крана: чем больше запас воды, тем меньше меняется ее уровень за время между двумя доливаниями.

От величины потребляемого тока и от емкости накопительного конденсатора Сф1 сильно зависит и напряжение на выходе выпрямителя: чем больше емкость Сф1 и чем меньше потребляемый ток, тем больше выпрямленное напряжение (чем больше емкость бака и чем меньше воды вытекает через открытый кран, тем больше средний уровень воды в баке). Совершенно очевидно, что ни при каких обстоятельствах напряжение на конденсаторе не может оказаться больше амплитуды переменного напряжения, которое подводится к выпрямителю и через вентиль заряжает накопительный конденсатор. Точно так же максимальный уровень воды в баке не может быть выше уровня ведра, из которого заливают этот бак, — вода может литься сверху вниз, но не наоборот.

Что же касается выпрямленного, то есть среднего напряжения, то его величина, как мы уже отмечали, зависит от емкости Сф1 и потребляемого тока и практически на 20—50% меньше амплитуды переменного напряжения. Выпрямленное напряжение оказывается равным амплитуде переменного напряжения лишь при «холостом ходе», то есть тогда, когда выпрямитель работает без нагрузки. И, наконец, последнее — уровень воды в баке не должен превышать высоты его стенок, иначе вода перельется через верх. Так же и напряжение, подводимое к конденсатору, не должно превышать величину, на которую он рассчитан, иначе произойдет пробой этого конденсатора (повреждение изолятора и короткое замыкание обкладок). Оба конца повышающей обмотки силового трансформатора окажутся замкнутыми через вентиль, в результате чего в цепи пойдет большой ток и трансформатор и вентиль, быстро перегревшись, выйдут из строя.

Следует заметить, что, когда возрастает ток в повышающей обмотке, увеличивается потребляемая трансформатором мощность, а следовательно, и ток в сетевой обмотке, куда включен предохранитель. Это значит, что в случае «пробоя» конденсатора фильтра мгновенно сгорит предохранитель и одна из самых дорогих деталей приемника — силовой трансформатор — будет спасен (конечно, лишь в том случае, если вы еще не успели заменить настоящий предохранитель толстым «жучком», рис. 148).

Обратите внимание на то, что в верхнем и нижнем рядах рисунка 147 изображены совершенно одинаковые баки и в то же время во втором случае пульсации намного меньше, а средний уровень воды заметно выше. А дело здесь в том, что бак, расположенный в нижнем ряду, доливается в два раза чаще, чем верхний, и поэтому уровень воды меняется весьма незначительно.

Рассуждая подобным образом, можно прийти к следующему выводу: чем чаще мы будем подзаряжать накопительный конденсатор фильтра Сф1, тем больше будет выпрямленное напряжение и меньше будут его пульсации. Но как можно увеличить частоту импульсов зарядного тока? Ведь не можем же мы изменить частоту переменного напряжения, которое подводится к вентилю — эта частота всегда равна 50 гц («частота сети»)!

Оказывается, что есть другой путь. Чтобы подзаряжать конденсатор Сф1 не пятьдесят раз в секунду, а сто раз, достаточно использовать напряжение второго полупериода, во время которого вентиль обычного однополупериодного выпрямителя тока не пропускает. Нам уже давно известно, что любой вентиль пропускает ток лишь во время положительных полупериодов переменного напряжение, а во время отрицательных полупериодов диод оказывается включенным в обратном направлении (или на аноде кенотрона оказывается «минус») и тока в цепи нет. Но ведь сами названия «положительный» и «отрицательный», которые мы присвоили полупериодам переменного напряжения, совершенно условны. Можно включить вентиль так, что он будет пропускать ток во время первого, третьего, пятого и других нечетных полу периодов.

Если повернуть вентиль в обратную сторону (лист 176), ток через нагрузку будет протекать во время второго, четвертого, шестого и других четных полупериодов. Если же взять силовой трансформатор с двумя одинаковыми повышающими обмотками и два вентиля, то можно построить схему, где ток через нагрузку будет протекать в одну и ту же сторону как во время четных, так и во время нечетных полупериодов (лист 176). Такой выпрямитель получил название двухполупериодного. Совершенно ясно, что в двухполупериодном выпрямителе подзарядка накопительного конденсатора будет происходить уже не пятьдесят, как это было в однополупериодном, а сто раз в секунду. При этом, как уже отмечалось, увеличится выпрямленное напряжение (обычно на 15—25%) и заметно уменьшатся пульсации. Кроме того, при переходе на двухполупериодное выпрямление основная частота пульсаций увеличится вдвое. Это значит, что конденсаторы фильтра Сф1 и Сф2 легче будут замыкать на «землю» переменную составляющую выпрямленного тока, так как, чем больше частота, тем меньше емкостное сопротивление конденсаторов.

Есть у двухполупериодного выпрямителя и свои недостатки— для него нужно иметь два вентиля и две повышающие обмотки. Что касается двух вентилей, то это не так уж страшно, особенно в тех случаях, когда применяется кенотрон. Дело в том, что почти все кенотроны делают с двумя анодами и поэтому одной лампы вполне достаточно для двухполупериодного выпрямителя. Поскольку в таком выпрямителе катоды вентилей все равно соединяют вместе, то в большинстве двуханодных кенотронов делают один общий катод. Именно с этого общего катода на нагрузку подается «плюс» выпрямленного напряжения, то есть с катода кенотрона напряжение должно подаваться к анодным и экранным цепям усилительных ламп.

В силовом трансформаторе вместо двух повышающих обмоток наматывают одну обмотку с удвоенным числом витков и от середины ее делают отвод. С этого отвода, который является общим выводом обеих частей повышающей обмотки, к нагрузке подводится «минус» выпрямленного напряжения, то есть средний вывод — «средняя точка» — должен быть подключен к катодам усилительных ламп. В подавляющем большинстве случаев средний вывод соединяется с металлическим шасси или с «заземленным проводом», куда, как известно, подключаются и катоды ламп. Исключение составляет лишь схема получения смещения за счет общего тока (лист 139).

То, что мы выполнили обе повышающие обмотки в виде одной, не устранило второго недостатка двухполупериодного выпрямителя, так как в такой объединенной обмотке число витков в два раза больше, чем в одной обмотке однополупериодного выпрямителя. Так, например (лист 116), если у нас был однополупериодный выпрямитель, повышающая обмотка которого содержала 1200 витков и давала эффективное переменное напряжение 200 в (амплитуда 280 в), то для постройки аналогичного двухполупериодного выпрямителя повышающая обмотка должна содержать 2400 витков (2 х 1200), а между крайними выводами этой обмотки будет действовать эффективное напряжение 400 в (амплитуда около 600 в).

Увеличение числа витков повышающей обмотки крайне нежелательно, так как при этом усложняется изготовление трансформатора и увеличиваются его габариты Поэтому там, где это возможно, строят двухполупериодный выпрямитель по так называемой «мостовой» («мостиковой») схеме, которая позволяет обойтись лишь одной повышающей обмоткой, Это значит что из обычного однополупериодного выпрямителя можно собрать по мостовой схеме двухполупериодный, без замены и даже без переделки силового трансформатора.

Работа мостовой схемы особого пояснения не требует. В ней используется четыре вентиля, и включены они так, что во время обоих полупериодов через нагрузку проходит ток, причем этот ток всегда проходит в одну и ту же сторону (лист 177). Мостовую схему принято вычерчивать в виде квадрата, каждая сторона которого содержит вентиль, одна диагональ — нагрузку, а вторая — генератор переменного тока. В нашем приемнике, схема которого приведена на чертеже 19, используется тот же силовой трансформатор от приемника «Рекорд», что и в блоке питания макета (чертеж 9), но благодаря двухполупериодному выпрямителю (мостовая схема) несколько повышается анодное напряжение, а также уменьшается уровень фона. При выборе трансформатора для мостовой схемы нужно помнить, что его повышающая обмотка ни в коем случае не должна соединяться с накальной, так как последняя заземляется.